Hussain, M., Grill, W. M., & Pelot, N. A. (2024). Data and scripts from: Highly efficient modeling and optimization of neural fiber responses to electrical stimulation. Duke Research Data Repository. https://doi.org/10.7924/r48g8tf24
Fu, D., Pradeep Narayanan, R., Prasad, A., Zhang, F., Williams, D., Schreck, J., Yan, H. & Reif, J. (2022). Data from: Automated design of 3D DNA origami with non-rasterized 2D curvature. Duke Research Data Repository. https://doi.org/10.7924/r4d223179
Larsen, G. D. , Falvo, C., Tuohy, C., Goerke, M., Friedlaender, A. S., Nichols, R. C., Pallin, L., Simms, A., Groff, D., Ciminio, M., Johnston, D. W. (2022). Aerial data from drone surveys of coastal habitats on the West Antarctic Peninsula during austral summer (January–March 2020 and February–March 2019). Duke Research Data Repository. https://doi.org/10.7924/r4sf2xs2w
Ridge, J. T., Gray, P. C., Windle, A. E., & Johnston, D. W. (2020), Deep learning for coastal resource conservation: automating detection of shellfish reefs. Remote Sens Ecol Conserv. doi:10.1002/rse2.134
Duke University Libraries' Multispectral Imaging Team. (2019). [Acts of the Apostles]. (multispectral file stack). Duke Digital Repository. https://doi.org/10.7924/r4c53jx21