% BNNNI model Tc1 and Tc2 finite size scaling close all; % set up figure widthpix = 375; heightpix = 300; leftmargin = 85; bottommargin = 78; topmargin = 15; rightmargin = 82; centermargin = 0; widthtotal = 2*widthpix+centermargin+leftmargin+rightmargin; heighttotal = heightpix+topmargin+bottommargin; left = leftmargin/widthtotal; bottom = bottommargin/heighttotal; center = centermargin/widthtotal; width = widthpix/widthtotal; height = heightpix/heighttotal; psize = 30; % font size msize = 10; % marker size sizes = [8,12,16,20,24,28,32]; fig = figure('rend','painters','pos',[100 100 widthtotal heighttotal]); for prp=1:2 if 1==prp panelA = axes('Position', [left, bottom, width, height]); kappa = 0.6; elseif 2==prp panelB = axes('Position', [left+width+center, bottom, width, height]); kappa = 0.8; end % read in data lambdan = 1; columnflag = 1; allresult = containers.Map('KeyType', 'int32', 'ValueType','any'); for rp=1:length(sizes) asize = sizes(rp); fname = strcat('../data/2DZBT/clength_', num2str(kappa), '_0_0_', num2str(asize), '.dat'); if ~exist(fname, 'file') continue end % data format: kappa J size logZ susceptibility correlation_lengths data = dlmread(fname); data = data(isfinite(data(:, 5+columnflag+lambdan)) & data(:, 5+columnflag+lambdan)/asize < 1e2, :); Js = data(:,2+columnflag); xis = data(:, 5+columnflag+lambdan); ysfitout = xis > 0; xis(ysfitout) = data(ysfitout, 6+columnflag+lambdan); xis = abs(xis); allresult(asize) = [Js, xis/asize]; peakrst = fitpeak(Js, log(xis) ); end % get xi crossing havesizes = cell2mat(keys(allresult)); crossings = []; for rp=1:length(havesizes)-1 size1 = havesizes(rp); size2 = havesizes(rp+1); data1 = allresult(size1); data2 = allresult(size2); js = max(min(data1(:,1)), min(data2(:,1))):0.002:min(max(data1(:,1)), max(data2(:,1))); corrlen1 = interp1(data1(:,1), log(data1(:,2)), js, 'pchip'); corrlen2 = interp1(data2(:,1), log(data2(:,2)), js, 'pchip'); result = finducrossing(js, corrlen1, corrlen2); if numel(result) > 2 result = result(end, :); end if ~isempty(result) avesize = double((size1+size2)/2); crossings(end+1,:) = [1./avesize, 1./result(1), exp(result(2)) ]; fprintf('%d', avesize); fprintf('\t%g\t%g', result); fprintf('\n'); end end plot( crossings(:,1) , crossings(:,2), 'xk', 'markersize', msize+4, 'linewidth', 1.5, 'markerfacecolor', 'k'); hold on; % fit if size(crossings,1)>2 [p, S] = polyfit(crossings(:,1), crossings(:,2), 1); xs = linspace(0, 0.125); ys = polyval(p, xs); plot(xs, ys, '--k'); ci = polyparci(p,S); fprintf('Fitting result: %g\t%g\n', p(end), (ci(2,end)-ci(1,end) ) /2 ); end xlabel('$1/L$', 'interpreter', 'latex'); ylabel('$T^*$', 'interpreter', 'latex'); xlim([0, 0.13]); % get xi turning point xipeaks = []; for rp=1:length(havesizes) asize = double(havesizes(rp)); data = allresult(asize); Js = data(:,1); xis = data(:,2); result = flipud( [1./Js, log(xis)] ); % calculate curvature fitx = linspace(result(1,1), result(end,1), 200); fity = interp1(result(:,1), result(:,2), fitx, 'spline' ); dx = gradient( fitx ); ddx = gradient( dx ); dy = gradient( fity ); ddy = gradient(dy); num = dx .* ddy - ddx .* dy; denom = dx .* dx + dy .* dy; denom = sqrt(denom); denom = denom .* denom .* denom; if 1==prp % (-)derivitive maximum curvatur = -dy ./ dx; else % curvature maximum curvatur = -num ./ denom; end rst = fitpeak( fitx, curvatur, 2 ); if isfinite( rst(1) ) xipeaks(end+1, :) = [asize, rst]; end end if ~isempty( xipeaks ) invLs = 1./xipeaks(:,1); if 1==prp fiters = invLs < 1/8 & invLs > 1/26; else fiters = invLs < 1/8 & invLs > 1/36; end plot( invLs(fiters), xipeaks(fiters,2), 'sk', 'markersize', msize, 'markerfacecolor', 'k'); plot( invLs(~fiters), xipeaks(~fiters,2), 'sk', 'markersize', msize, 'linewidth', 1 ); [p, S] = polyfit(invLs(fiters,1), xipeaks(fiters,2), 2); if 1==prp xs = linspace(0.035, 0.13); ys = polyval(p, xs); plot(xs, ys, ':k'); else xs = linspace(0, 0.13); ys = polyval(p, xs); plot(xs, ys, '--k'); end ci = polyparci(p,S); fprintf('Fitting result: %g\t%g\n', p(end), (ci(2,end)-ci(1,end) ) /2 ); end xlim([0, 0.13]); if 1==prp ylim([0.2, 1]); yticks([0.2,0.6,1]); elseif 2==prp ylim([0.7, 1.5]); yticks([0.7,1.1,1.5]); set(gca, 'YAxisLocation', 'right'); end set(gca, 'fontsize', psize, 'fontname', 'times new roman'); end annotation('textbox',[0.1, 0.86, 0.1, 0.1], 'String', '(a) $$\kappa=0.6$$', 'interpreter', 'latex', 'EdgeColor','none', 'Fontname', 'Times New Roman','fontsize',psize); annotation('textbox',[0.51, 0.86, 0.1, 0.1], 'String', '(b) $$\kappa=0.8$$', 'interpreter', 'latex', 'EdgeColor','none', 'Fontname', 'Times New Roman','fontsize',psize); print('../figures/artfig_BNNNITcScaling.eps', '-depsc'); function result = fitpeak(xs, ys, multiflag) if nargin<3 multiflag = 0; % 0: get lowest % 1: get all % 2: get maximal end lmaxs = islocalmax(ys); if any(lmaxs) locmaxs = xs(lmaxs); if numel(locmaxs) > 1 maxs = ys(lmaxs); if 0 == multiflag % choose first peak locmaxs = locmaxs(1); elseif 2==multiflag % choose max peak [tmp, idxm] = max(maxs); locmaxs = locmaxs(idxm); end end result = []; for locmax=locmaxs.' % get index k = find(xs == locmax); xss = linspace( xs(max(1, k-1) ), xs( min(numel(xs), k+1) ), 1000 ); yss = interp1(xs, ys, xss, 'spline'); [tmp, idxs] = max(yss); result = [result; xss(idxs), yss(idxs) ] ; end else result = [nan, nan]; end end % function find crossing point of u function result = finducrossing(Ts, u1s, u2s) fdiff = @(xs)interp1(Ts, u1s-u2s, xs, 'phip'); N = 100; % grid dx=(Ts(end)-Ts(1))/N; x2=Ts(1); y2=fdiff(x2); result=[]; for i=1:N x1=x2; y1=y2; x2=Ts(1)+i*dx; y2=fdiff(x2); if (y1*y2<=0) % Rolle's theorem : one zeros (or more) present aresult = fsolve(fdiff,(x2*y1-x1*y2)/(y1-y2), optimoptions('fsolve','Display','off')); % Linear approximation to guess the initial value in the [x1,x2] range. ylval = interp1(Ts, u1s, aresult, 'phip'); result = [result; aresult, ylval ]; end end end