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Abstract  

This report is companion to Version 1 (V1) of the IPHEx (Integrated Precipitation and Hydrology 
Experiment) reference quantitative precipitation estimation (RQPE) product.  The IPHEx-QPE-
1.1 V1 consists of 10 years (2008-2017) hourly rainfall intensity at 1 km2 resolution over the core 
region of the IPHEX domain, centered in the Pigeon River basin in The Southern Appalachian 
Mountains in North Carolina.  Two data sets are the basis of the IPHEx RQPE: 1) the national 
combined radar-raingauge StageIV product (hourly, 16km2 spatial resolution); and 2) independent 
raingauge measurements from a network of high elevation raingauges in the region installed in 
support of NASA TRMM and GPM ground validation (GV) activities.  First, fractal downscaling 
is applied to the Stage IV product to bring it to the 1 km2 resolution (STIVD). Regional event bias 
correction is then applied to the hourly downscaled StageIV product (STIVDB), followed by 
ordinary kriging (OK) to distribute errors among STIVDB and co-located raingauge observations 
to generate the final product STIVDBK. Evaluation of STIVDBK indicates that cumulative rainfall 
errors are as small as 1-3% while STIVD data have errors about 10-15%. However, assessment 
against the 10-year raingauge climatology revealed that significant biases at specific times-of-the 
day remain in STIVDBK, which also exhibit seasonality.  These biases reflect radar operations and 
viewing geometry that have preferential impact for shallow precipitation systems and isolated 
intense convection.  Consequently, light and convective rainfall corrections were applied to derive 
the final product (STIVDBKC) that is IPHEx-QPE-1.1 V.   Performance metrics such as Threat Score 
(TS) and Heidke Skill Scores (HSS) are on average  > 0.8  and close to 1 respectively for various 
rainfall thresholds over the 10-year period, and > 0.5 at the event time-scale(hourly). The root 
mean square error (RMSE) at the gauges is below 0.1 mm/hr and 0.5% for seasonal-scale 
accumulations.  Evaluation against an independent disdrometer data set consisting of disdrometers 
at various locations indicates large overestimation errors (~30%) in the inner mountain region and 
at low elevations during the IPHEX IOP.  This is in part attributed to the lack of low elevation 
raingauges and the overshooting of both NEXRAD radars that contribute to the Stage IV product 
over the region, and challenges in handling isolated convection. Work toward developing the 
forthcoming  IPHEX-QPE 1.2 V2 reference product will focus on correcting low elevation rainfall 
using information from low elevation disdrometers and from NWP model simulations. Spatial 
intermittency will be addressed through a modified fractal downscaling methodology conditional 
on the rain support (i.e. the perimeter) of precipitation clusters in StageIV.   
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1. Introduction 

     Quantitative Precipitation Estimates (QPE) are essential for all water research and 
applications. Accurate QPEs capture realistic spatial and temporal variability of rainfall to close 
the water budget at desired catchment scales is the golden target. However, this is a difficult 
challenge because of the lack of high resolution accurate precipitation observations be it using 
point measurements (e.g. raingauges and disdrometers) or spatial measurements (e.g. radars).  In 
mountainous regions, remoteness and difficult access compound the problem for point 
measurements, whereas terrain blockage artifacts severely constrain the geometry of radar 
operations, and thus the measurement volume. Indeed, radar-based QPE in regions of complex 
topography remains inadequate despite continuous efforts to calibrate and improve radar products 
using more sophisticated approaches (e.g. Zhang et al. 2014). 

         This report describes the methodology used to develop Version 1 of the reference rainfall 
product for the core region of the Integrated Precipitation and Hydrology Experiment (IPHEx, 
Barros et al. 2014), that is centered in the Pigeon River Basin in North Carolina (Fig.1). The 
IPHEx-QPE-1.1 V1 is a 10-year combined raingauge-radar dataset of hourly rainfall at 1 km2 

resolution.  Because most of the raingauge observations used for the product are at high elevations, 
a Version 2 is being developed with low elevation disdrometer data.  Finally, development of 
Version 3 is ongoing that will be constrained to close the water budget at event, season and annual 
time-scales.    

  Radar-based QPE is significantly influenced by systematic errors because of retrieval 
algorithms, measurement limitations, and hardware calibration (Anagnostou et al., 2001; Borga 
and Tonelli, 2000; Fulton et al., 1998; Nelson et al., 2010; Prat and Barros, 2010b; Steiner et al., 
1999; Villarini and Krajewski, 2010). Optimally merging raingauge measurement and radar 
observations via bias correction methods and kriging-based methods has been widely used in the 
development of high resolution QPE data sets (Tao and Barros, 2013; Sideris et al., 2014; Seo and 
Breidenbach, 2002; Seo et al., 1990; Gabella et al., 2000; Krajewski and Georgakakos, 1987).  In 
deriving the reference product for IFloodS (Iowa Flood Studies), Seo et al. (2018) first evaluated 
the error structure of various radar rainfall products against raingauges, and they found that radar-
only rainfall QPE was significantly inferior to combined radar-rainfall QPE products, and in 
particular StageIV  (Lin and Mitchell, 2005). To achieve the reference product, they subsequently 
fitted error models to address systematic errors (overall and conditional bias), and then combined 
various products optimally to minimize overall random error features. One important contribution 
of the IFloodS work is the fingerprinting of the idiosyncracies of different radar retrieval 
algorithms across scales and rainfall regimes which result in rainfall products that underperform 
against operational raingauge-only interpolation algorithms where there is an adequate density of 
gauges. One complication is the fact that radar measurement errors can be highly non-stationary 
in space and time which explains the limited improvement obtained from global error models as 
noted by Seo et al. (2018).  In mountainous regions, this problem can be expected be further 
amplified due to interactions among weather regimes, precipitation systems and topography.  

The unique advantage of radar measurements among precipitation measurement systems 
is their space-filling nature from which spatial fields of rainfall can be derived.  The limitation is 
two-fold: 1) it is an indirect measurement and retrieval algorithms are necessary to convert 
reflectivity radar to quantitative precipitation estimates; and 2) the spatial resolution depends on 
the control volume of measurement over which the reflectivity is integrated.  The latter is addressed 
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here via downscaling to achieve the desired resolution. While extensive studies have been done 
over the past decades, stochastic downscaling of rainfall fields remains an open problem (Bindlish 
and Barros, 2000; Kim and Barros, 2001; Rebora et al., 2006; Barros and Tao, 2008; Tao and 
Barros 2010; Nogueira and Barros, 2015). Bindlish and Barros (2000) introduced wind 
redistribution modulated by terrain into the fractal downscaling/upscaling framework proposed by 
Bindlish and Barros (1996) to incorporate orographic enhancements effects while preserving the 
spatial statistics across scales and capturing the temporal evolution of scaling behavior. However, 
these modifications require high resolution time-varying wind data. To overcome this problem, 
Rebora et al. (2006) established a rainfall downscaling technique which is similar to Bindlish and 
Barros (1996), assuming the scaling behavior of rainfall fields is the same over a time interval.   
Albeit limited by the original coarse resolution information available, fractal downscaling methods 
are based on the assumption of spatial self-similarity, and the statistical properties of fields at 
coarse scales are preserved in the downscaling process in contrast with other interpolation methods, 
and no calibration or optimization is required (Tao and Barros, 2010; Nogueira and Barros, 2015). 
Moreover, fractal downscaling methods are inherently stochastic, the outcome of the downscaling 
process itself is a distribution or ensemble of rainfall fields, and thus no extra work is necessary to 
characterize product uncertainty.   

For developing the IPHEX reference rainfall, that is the IPHEx-QPE-1.1 V1 reference 
quantitative precipitation estimation (RQPE) product, we start with the Stage IV combined radar-
rainfall product (hourly, 16km2) as the baseline spatial support.  Subsequently, hourly Stage IV 
fields are downscaled to 1km2, and for each hour conditional bias correction and linear kriging 
algorithms are applied to derive an unbiased rainfall field at hourly, seasonal and inter-annual 
scales at the raingauge locations that compose the core IPHEx raingauge network (Barros et al. 
2017).  The reference IPHEX product represents a significant improvement over Stage IV and over 
MRMS (Zhang et al. 2014) over the region of study.  Nevertheless, independent evaluation against 
disdrometer observations during IPHEX shows that the reference product overestimates rainfall at 
low elevations and on the lee side of individual ridges that is different from event to event 
depending on the weather system.   

The present report is organized as follows. Data are described in Section 2.  Section 3 
presents methods and evaluation metrics.  Overall evaluation and results of error analysis of the 
IPHEx-QPE-1.1 V1 RQPE 10-year data set product are presented in Section 4, followed by 
conclusion in Section 5. 

 

2. Data 

2.1 IPHEx Raingauge Observations 

A high resolution raingauge network has been in operation in the Southern Appalachian 
Mountains since 2007 in support of NASA’s Precipitation Measurement Missions (PMM) 
program ground validation (GV) activities (Prat and Barros, 2010a). Although the total number of 
gauges in the network has changed over time, a baseline network with a minimum of 34 raingauges 
has been maintained in the Pigeon River basin, over the ten-year reference period 2007-2018 
before, during and immediately after IPHEx. A map of the baseline raingauge network with 
individual gauges identified by numbers is shown in Figure 1, whereas detailed geographical 
coordinates of the gauges are listed in Table 1.  Typical raingauge measurement errors include 
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deposition of dust or foreign materials on the funnel surface that affect its wetting properties, and 
clogging of the piping and mesh filters, that can occur in-between maintenance visits, wind effects, 
and representativeness errors related to the location and density of the network proper.  Turbulence 
that develops under strong wind conditions decreases the number of raindrops that are captured by 
the gauge resulting in underestimation errors on the order of 2-18% (e.g. Wang and Wolff, 2010). 
The raingauge network is visited at least thrice per year and careful maintenance is conducted 
including cleaning of raingauges and their surroundings, and on-site calibration to maintain 
operational errors below 3%.  Although it is difficult to identify and correct wind artifacts, the 
rigorous maintenance protocol provides assurance of the quality of the raingauge measurements 
overall. Locations with strong winds in the IPHEX domain are not within the region selected for 
developing the reference product, albeit such instances may occur.  In this work, we use these 
hourly rainfall measurements to adjust radar-based QPE. In-situ rain-gauge data are publicly and 
available and can be found at http://dx.doi.org/10.5067/GPMGV/IPHEX/GAUGES/DATA301. 

In addition to the raingauges, a network of Parsivel disdrometers was deployed during the 
IPHEX EOP (Extended Observing Period, 2013-2014) which was augmented during the IOP 
(Intense Observing Period, 5/1/2014-6/15/2014).  Disdrometer locations are identified by the letter 
P in Figure 1.  Due to the limited duration of the disdrometer measurements, the disdrometer data 
were used only independent evaluation of V1 of the reference product. One important difference 
between the raingauge and the disdrometer locations is that the raingauges are generally placed on 
ridges, whereas most disdrometers are placed on hillslopes in the inner region or at low elevations.    
This is a crucial difference the implications of which will be discussed in detail in Section 4. 
 

 
Figure 1 - Map of ground based observations.  Locations marked by numbers only are raingauges; locations marked 
by numbers preceded by P are disdrometers. See Table 1 for list of stations and geographical coordinates. 

http://dx.doi.org/10.5067/GPMGV/IPHEX/GAUGES/DATA301
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Table 1 – Index, and coordinates for the raingauge stations marked in Figure1. The index is used to identify specific 
gauges in some of the graphs.  Two raingauges at Purchase Knob a supersite in the inner mountain region are 
highlighted in bold font. Shaded rows indicate stations with collocated raingauges that have different temporal 
resolution (e.g. tip size). 

NO. Site ID. Lat. Lon. Elev. (m) 
1 RG001 35.39830 -82.91300 1156 
2 RG002 35.41750 -82.97140 1731 
3 RG003 35.38460 -82.91610 1609 
4 RG004 35.36830 -82.99020 1922 
5 RG005 35.40890 -82.96460 1520 
6 RG008 35.38210 -82.97360 1737 
7 RG010 35.45640 -82.94680 1478 
8 RG100 35.58610 -83.07250 1495 
9 RG100T 35.58767 -83.06468 1485 
10 RG101 35.57500 -83.08820 1520 
11 RG102 35.56370 -83.10360 1635 
12 RG103 35.55340 -83.11790 1688 
13 RG104 35.55490 -83.08800 1584 
14 RG106 35.43210 -83.02910 1210 
15 RG109 35.49560 -83.04040 1500 
16 RG110 35.54810 -83.14820 1563 
17 RG300 35.72653 -83.21692 1558 
18 RG301 35.70552 -83.25595 2003 
19 RG302 35.72135 -83.24675 1860 
20 RG303PK 35.58610 -83.07253 1495 
21 RG303S 35.76295 -83.16222 1490 
22 RG304 35.67010 -83.18287 1820 
23 RG305 35.69150 -83.13190 1630 
24 RG306 35.74597 -83.17148 1536 
25 RG307 35.65163 -83.19952 1624 
26 RG308 35.73027 -83.18237 1471 
27 RG309 35.68297 -83.15003 1604 
28 RG310 35.70273 -83.12263 1756 
29 RG311 35.76507 -83.14042 1036 
30 RG400 35.70273 -83.12263 1756 
31 RG401 35.65163 -83.19952 1624 
32 RG402 35.72135 -83.24675 1860 
33 RG403 35.51777 -83.10113 925 
34 RG407 35.51777 -83.10113 925 

 

2.3 Radar Data 

The NCEP/EMC (Environmental Modeling Center) Stage IV is a QPE product from  the 
National Weather Service (NWS) derived from the regional hourly and 6-hourly multisensor  
(radar + NWS raingauges) precipitation analyses (MPEs), which is further improved with new 
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analyses from River Forecast Centers (RFCs) over the conterminous United States (CONUS) (Lin 
and Mitchell, 2005). Due to ground clutter effects and uncertainty in retrieval algorithms, Stage 
IV data sets have significant biases and errors in rainfall detection in mountainous regions as stated 
earlier. In this study, the PMM GV raingauge observations from the Southern Appalachians are 
used to correct StageIV.  We also have limited access to hourly Multiresolution Multisensor 
(MRMS) combined radar and raingauges QPE at 1 km2 (Zhang et al. 2014) during the IPHEx IOP 
(Intense Observing period) for independent evaluation. 

 

3. Methods 

The framework adopted for deriving the IPHEX reference product V1 is summarized in Figure 2.  

 
Figure 2 – Workflow to generate the IPHEx reference product V1. 

First, fractal downscaling was used to generate high resolution hourly StageIVD at 1km from the 
original Stage IV product.  Downscaling to 250m resolution was also conducted for modeling 
applications.  Although the 250 m product was not stored as part of the reference product, it can 
be generated at any time if needed.  After downscaling, bias correction and ordinary kriging were 
applied consecutively to modify the downscaled StageIVD to StageIVDBK at hourly time-scale.  The 
StageIVDBK data were subsequently evaluated against the raingauge climatology from 2008 to 
2017, and a climatology corrected version StageIVDBKC was obtained to correct systematic radar 
measurement errors conditional on rainfall regime. 

3.1 Fractal downscaling 

In this study, we aim to derive high resolution QPE data sets from original Stage IV using 
fractal downscaling. Under the assumption of self-similarity, the Hurst coefficient H, fractal 
dimension D, and the spectral exponent β are related as follows: 

𝐷𝐷 =  7−𝛽𝛽
2

                                                                         (1) 

𝐻𝐻 =  𝛽𝛽−1
2

                                                                           (2) 

The parameter β describes the distribution of the rainfall at different scales, and it is estimated as 
the slope of the 2D Fourier spectrum of the rainfall field (log-log plot).  The power spectral density 
Z(u,v) in the 2D Fourier domain describing the relationship between spatial scale and rainfall is :  

𝑍𝑍(𝑢𝑢, 𝑣𝑣) = �𝐿𝐿
𝑁𝑁
�
2
∑ ∑ 𝑧𝑧(𝑥𝑥,𝑦𝑦)𝑁𝑁−1

𝑦𝑦=0
𝑁𝑁−1
𝑥𝑥=0 𝑒𝑒𝑒𝑒𝑒𝑒 �− 2𝜋𝜋𝜋𝜋

𝑁𝑁
(𝑢𝑢𝑥𝑥 + 𝑣𝑣𝑣𝑣)�                                                   (3) 
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where u and v represent the transform of x and y in Fourier domain, N is the total number of grid 
points in each direction. Additionally, the spectral density at wavenumber k = 1.0 is defined as the 
roughness factor, that is the variance of the field. The Hurst coefficient describes the auto 
correlation strength (range from 0 to 1) with higher values of H implying higher auto-correlation, 
that is persistence. The mean power spectral density in 2-D Fourier domain is as follows: 

                       𝑆𝑆𝑗𝑗 = 1
𝐿𝐿2𝑁𝑁𝑗𝑗

∑ |𝑍𝑍(𝑢𝑢, 𝑣𝑣)|2𝑁𝑁𝑗𝑗
1                        (4)     

where Nj is the number of coefficients that satisfy the condition  𝑗𝑗 < √𝑢𝑢2 + 𝑣𝑣2 < 𝑗𝑗 + 1.  The mean 
power spectral density has a power-law relationship with wave number k, and k is defined as below: 

 𝑘𝑘 = 2𝜋𝜋
√𝑢𝑢2+𝑣𝑣2

                                                                      (5) 

 𝑆𝑆  ~  𝑘𝑘−𝛽𝛽−1                                                                      (6) 

where 𝛽𝛽 is the spectral exponent that is the slope of hourly power density spectrum. Assuming the 
rainfall fields are self-similar, then the information at fine resolutions can be derived from the 
information at coarser resolution.   This is accomplished using a Brownian surface (Zb, H=0.5) at 
the desired fine resolution as spatial support for the interpolation, which is modified in the Fourier 
domain (ZD) to replicate the distribution of energy slope of the spectral slope and roughness factor 
per Bindlish and Barros (1996): 

 𝑍𝑍𝐷𝐷(𝑢𝑢, 𝑣𝑣) = 𝑍𝑍𝑏𝑏(𝑢𝑢,𝑣𝑣)

𝑘𝑘𝑟𝑟
�𝛽𝛽−𝛽𝛽𝑏𝑏� 2⁄ 𝑒𝑒𝑒𝑒𝑒𝑒 �

1
2
�𝑆𝑆𝑟𝑟,1 −

𝛽𝛽+1
𝛽𝛽𝑏𝑏+1

𝑆𝑆𝑟𝑟,2��                                                                        (7) 

where 𝛽𝛽, 𝛽𝛽𝑏𝑏 , Z(u,v) and Zb(u,v) are respectively the original rainfall fields spectral exponent, 
Brownian surface spectral exponent, and Fourier transform of interpolation surface and Brownian 
surface, respectively; kr is the wavenumber; Sr,1 and Sr,2 are the roughness factor of the original 
rainfall fields and Brownian surface, and ZD is the modified rainfall field at the desired resolution 
in the Fourier domain. Furthermore, the interpolation surface is not unique due to the non-
uniqueness of Brownian surfaces, and thus an ensemble of ND rainfall fields with the same spatial 
statistics can be generated by generating an ensemble of ND Brownian surfaces. Following 
Nogueira and Barros (2015), here ND=50 and the correction steps in Figure 2 are applied to the 
ensemble mean.   

 

3.2 Bias correction 

Event-scale - Collocated hourly raingauge measurements and downscaled Stage IV 
estimates can be related using linear regression as follows: 

𝑅𝑅𝑔𝑔𝑡𝑡�𝑖𝑖𝑔𝑔, 𝑗𝑗𝑔𝑔� = 𝜅𝜅𝑅𝑅𝑟𝑟𝑡𝑡�𝑖𝑖𝑔𝑔, 𝑗𝑗𝑔𝑔� + 𝜀𝜀                (8) 
where Rr represent radar measurements, Rg represent raingauge observations, and  are 
respectively the slope (conditional bias correction) and the intercept (systematic bias correction). 
For each hour, collocated pairs of StageIVD estimates and raingauge observations within a radius 
of L = 5 km centered on the StageIVD pixel were identified as long as more than two raingauges 
measure rainfall different from zero. In the first phase of regional least-square linear regression 
was applied subsequently to all StageIVD pixels.  Assuming homoscedasticity, bias correction was 
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applied only to the StageIVD pixel estimates within ±1-σ deviation of the regional regression line 
at hourly time-scale.  

Climatology - The second phase of bias correction aimed eliminating the systematic bias 
identified by comparing the diurnal and seasonal cycles against the 10-year gauge climatology that 
show how radar measurement geometry results in systematic detection errors depending on rainfall 
regime, thus varying with time-of-day and season.  Specifically, this relates to missing shallow 
rainfall due to overshooting errors in the Southern Appalachian (e.g. Wilson and Barros, 2014; 
Duan and Barros, 2017; Arulraj and Barros, 2017).  For this purpose, the following corrections 
were added for rainfall below and above a threshold X, where X=2mm/hr in the Pigeon River 
Basin. When raingauge measurements are less than 2mm/hr and Stage IVD estimates are nil, the 
StageIVD value was replaced by the raingauge observations, here termed Light Rainfall Correction 
(LRC). Furthermore, for each hour, nil StageIVD estimates where raingauge measurements are 
greater than X=2mm/hr were identified and replaced by the mean of the corresponding collocated 
raingauge measurements, hereafter Mean Rainfall Correction (MRC). Finally, for localized 
precipitation (i.e. only two rainguages or fewer detect rainfall) normally associated with isolated 
convective activity, the anomalies calculated as the differences between the STIVD obtained from  
for each  pixel and the local raingauge measurements were linearly distributed among the 
surrounding 25 pixels (5 pixel window centered at the StageIVB pixel)– Convective Rainfall 
Correction (CRC).When more than 2 raingauges measured rainfall, then the anomalies for each 
pixel were spatially distributed using ordinary kriging as described below – Global Rainfall 
Correction (GRC). 

 

3.3 Ordinary kriging 

The Ordinary kriging (OK) estimator is a weighted linear unbiased estimator that predicts  
(interpolates) values of a variable at a specific location using weights based on the spatial 
covariance structure of the variable assuming an unknown constant mean value and minimizing 
prediction variance. In our case, the rainfall differences among raingauge measurements and 
StageIVDB at all raingauge locations were calculated and denoted as 𝐺𝐺(𝑥𝑥𝑖𝑖) at gauge location i. To 
generalize the interpolation to any location within a domain of interest, a continuous model to 
describe the covariance structure of the data is necessary.  A commonly used semi-variogram 
model is the spherical model, which exhibits linear behavior at the origin. A review of different 
types of semivariogram models can be found in Li and Heap (2008). Mirko Mälicke (et al., 2018) 
analyzed in detail the differences of several commonly used semivariogram models. They point 
out that, given the same variogram parameters (nugget, sill and range), spherical models reach to 
the maximum for comparatively shorter spatial lags (see Figure 1 in Mirko Mälicke et al., 2018), 
and thus are suitable to capture strong spatial dependencies over short distances as in the case of 
orographic precipitation (see also McBratney and Webster, 1986, for detailed description of 
spherical model): 

𝛾𝛾(ℎ) = 𝐶𝐶0 + (𝐶𝐶 − 𝐶𝐶0) �3ℎ
2𝑑𝑑
− 1

2
�ℎ
𝑑𝑑
�
3
�  if   0 ≤ h ≤ d                               (9.1)    

          = 𝐶𝐶                                             if     h>d                                                      (9.2) 

𝛾𝛾0𝑖𝑖 = 1
𝑁𝑁𝐴𝐴
∑ 𝛾𝛾𝑘𝑘𝑘𝑘
𝑁𝑁𝐴𝐴
𝑘𝑘=1                                                                          (9.3) 



10 
 

𝛾𝛾00 = 1
𝑁𝑁𝐴𝐴
∑ ∑ 𝛾𝛾𝑘𝑘𝑘𝑘

𝑁𝑁𝐴𝐴
𝑙𝑙=1

𝑁𝑁𝐴𝐴
𝑘𝑘=1                                                           (9.4)    

where d is the range, h is the lag, NA is the number of available gauge locations, C and C0 are the 
sill and nugget values.  Neglecting local variability and measurement error at the spatial scale of 
the downscaled radar and raingauge (point) measurements, the nugget is constant and equal to zero 
(Diggle & Ribeiro, 2007). The rainfall difference at a target point x0 𝑍𝑍𝑜𝑜𝑜𝑜∗ (𝑥𝑥0)is calculated using a 
weighted linear combination of all available differences with constraints of unbiased estimator 

𝑍𝑍𝑜𝑜𝑜𝑜∗ (𝑥𝑥0) = ∑ 𝜆𝜆𝑖𝑖𝑜𝑜𝑜𝑜𝐺𝐺(𝑥𝑥𝑖𝑖)𝑛𝑛
𝑖𝑖=1                                                       (10.1) 

∑ 𝜆𝜆𝑖𝑖𝑜𝑜𝑜𝑜 = 1𝑛𝑛
𝑖𝑖=1                                                                   (10.2) 

Optimal weights can be obtained by solving following equation by employing Lagrange 
multiplier 𝜇𝜇: 

�

𝛾𝛾11 … 𝛾𝛾𝑛𝑛1
⋮ ⋱ ⋮
𝛾𝛾1𝑛𝑛 ⋯ 𝛾𝛾𝑛𝑛𝑛𝑛

1
⋮
1

1  ⋯   1 0

��

𝜆𝜆1OK
⋮

𝜆𝜆𝑛𝑛𝑂𝑂𝑂𝑂
𝜇𝜇

� = �
𝛾𝛾01
⋮
𝛾𝛾0𝑛𝑛
1
�                                                           (11) 

In this study, OK distributes spatially the differences between available raingauge measurements 
and radar data, which helps to generate modified radar rainfall fields.  

 

3.4 Evaluation Metrics 

Standard performance metrics (McBride and Ebert 2000; Wang, 2014) including false 
alarm rate (FR), probability of detection (PD), threat score (TS), and Heidke skill score (HSS), as 
well as bias, and the root-mean-square error (RMSE) are used to evaluate the corrected downscaled 
hourly rainfall. An instance when both radar product and the observations O used for evaluation 
exceed a specified rain rate threshold is a hit (H); when the opposite happens, the estimate is 
classified as a miss (M) if the observation matches the criterion, and a false alarm (FA) otherwise. 
The performance metrics are determined by combination of Hs, Ms and FAs: 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 1
𝑁𝑁
∑ (𝑂𝑂𝑛𝑛 − 𝑅𝑅𝑛𝑛)𝑁𝑁
𝑛𝑛=1                                                                                                             (12)    

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑁𝑁
∑ (𝑂𝑂𝑛𝑛 − 𝑅𝑅𝑛𝑛)2𝑁𝑁
𝑛𝑛=1                                                                                                      (13) 

𝐹𝐹𝐹𝐹 = 𝐹𝐹𝐹𝐹
𝐻𝐻+𝐹𝐹𝐹𝐹

, 0 ≤ 𝐹𝐹𝐹𝐹 ≤ 1                                                                                                             (14) 

𝑃𝑃𝑃𝑃 = 𝐻𝐻
𝐻𝐻+𝑀𝑀

, 0 ≤ 𝑃𝑃𝑃𝑃 ≤ 1                                                                                                              (15) 

𝑇𝑇𝑇𝑇 = 𝐻𝐻
𝐻𝐻+𝐹𝐹𝐹𝐹+𝑀𝑀

, 0 ≤ 𝑇𝑇𝑇𝑇 ≤ 1                                                                                                          (16) 

𝐻𝐻𝐻𝐻𝐻𝐻 = 2 ∗ 𝑍𝑍∗𝐻𝐻−𝐹𝐹𝐹𝐹∗𝑀𝑀
�(𝐻𝐻+𝐹𝐹𝐹𝐹)∗(𝑍𝑍+𝐹𝐹𝐹𝐹)�+�(𝑀𝑀+𝐻𝐻)∗(𝑀𝑀+𝑍𝑍)�

,−1 ≤ 𝐻𝐻𝐻𝐻𝐻𝐻 ≤ 1                                                        (17) 

where Z is the overall number of zeros (when neither radar data nor raingauge measurements match 
the threshold criterion). A TS of 0.5 implies that the criterion is satisfied at least 50% of the time, 
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and a higher value is indicative of superior performance. A TS=0.33 is indicative of performance 
similar to persistence, meaning predicted values in the next hour are the same as values at the 
previous hour. HSS describes the fractional improvement of the corrected IPHEx estimates over 
StageIV. Since HSS is a normalized score, it facilitates comparison among different data sets. An 
HSS of 0 means that the performance is not better than random chance. Note that we use all 
raingauges in the development of the reference rainfall (RR) and therefore evaluation against the 
raingauges serves to verify whether the two-step correction consisting of two unbiased estimators 
(linear bias correction + detection climatology and ordinary kriging) is also an unbiased estimator, 
and whether detection statistics and thus characterization of spatial intermittency improves. 

3.5 Error Modeling 

Error modeling in this study targets three major sources of uncertainty: 1) StageIV downscaling; 
2) bias correction; and 3) Kriging.   Errors specific to the radar algorithm errors and spatial 
mapping are not explicitly accounted although they are present implicitly in the original StageIV 
and therefore are propagated through the correction process. 

3.5.1 Downscaling 

In the fractal downscaling part, spatial scaling of statistical scale invariant fields can be described 
by investigating their statistical moments. Lavallee (et al., 1993) suggested a generic multiscaling 
relation: 

𝑀𝑀𝑞𝑞 =  〈𝜑𝜑𝜆𝜆
𝑞𝑞〉  ≈  𝜆𝜆𝐾𝐾(𝑞𝑞)                (17) 

Where < > represents statistical expectation, 𝜑𝜑 is a conserved statistic on average from scale to 
scale. q is the moment order, and 𝜆𝜆 =  𝐿𝐿0/𝑙𝑙 is the scale ratio. 𝐿𝐿0 is the largest scale in the domain 
and 𝑙𝑙 is the domain resolution. For a multifractal quantity the moment scaling exponent function, 
K(q) is a convex nonlinear function of q and therefore infinite number of scaling exponents are 
necessary to fully characterize the scaling behavior. Based on the stability properties of cascade 
generators, Schertzer and Lovejoy (1987) showed that K(q) can be modeled by: 

𝐾𝐾(𝑞𝑞)  =  �
𝐶𝐶1
𝛼𝛼−1

(𝑞𝑞𝛼𝛼 − 𝑞𝑞),     𝛼𝛼 ≠ 1
𝐶𝐶1𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞(𝑞𝑞),         𝛼𝛼 = 1

                                                            (18) 

The levy index, 𝛼𝛼, is in the range [0, 2], and it describes the degree of multifractality, with 𝛼𝛼 = 0 
for monofractals. The codimension of the mean singularity, 𝐶𝐶1, describes the intermittency of the 
mean process such that the higher 𝐶𝐶1, the more intermittent the field, and the more sparse the spikes 
of high values (Sun and Barros, 2010). 

Besides 𝛼𝛼 and 𝐶𝐶1, it is necessary to estimate another parameter describing the maximum order of 
singularity 𝛾𝛾𝑠𝑠, which indicates the amplitude of the fluctuations of rainfall extremes. The statistical 
meaning of this parameter is the upper limit of the observed singularity in a finite data set. 
Regarding time series, it can be calculated (Hubert et al. 1993): 

𝛾𝛾𝑠𝑠  =  𝛾𝛾0  �1 − 𝛼𝛼 �𝐶𝐶1
𝐷𝐷
�
−1/𝛼𝛼′

�                  (19) 
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Where 𝛼𝛼′ satisfies �1
𝛼𝛼
� + � 1

𝛼𝛼′ 
� = 1. 𝛾𝛾0 = 𝐶𝐶1/(1 − 𝛼𝛼) is the maximum order of singularity for an 

infinite length of time series. 𝛾𝛾𝑠𝑠 depends on both 𝛼𝛼 and 𝐶𝐶1. 

A detailed description of calculating 𝛼𝛼 and 𝐶𝐶1 using Double trace moment (DTM; Lavallee et al. 
1991b) can be found in the previous papers (e.g Sun and Barros, 2010). After the determination of 
all three parameters, assuming each pixel in our data fields is a station, one can obtain a map for 
each of these three parameters. Following Sun and Barros (2010), rainfall distribution can then be 
simulated using these parameters and rainfall spatial patterns and uncertainties can be analyzed.  

Spectral analyses can also be used in this part to describe the scale-invariant behavior: 

𝐸𝐸(𝑘𝑘)  ~  𝑘𝑘−𝛽𝛽−1                (20) 

And uncertainties exist in generating interpolating surfaces: 

𝑍𝑍𝐷𝐷(𝑢𝑢, 𝑣𝑣) = 𝑍𝑍𝑏𝑏(𝑢𝑢,𝑣𝑣)

𝑘𝑘𝑟𝑟
�𝛽𝛽−𝛽𝛽𝑏𝑏� 2⁄ 𝑒𝑒𝑒𝑒𝑒𝑒 �

1
2
�𝑆𝑆𝑟𝑟,1 −

𝛽𝛽+1
𝛽𝛽𝑏𝑏+1

𝑆𝑆𝑟𝑟,2��             (21) 

Where all components are explained in Eqn. 7. 

Following Nogueira and Barros (2015), we used least squares to determine spectral exponent of 
the original rainfall fields, assuming the residuals of rainfall fields in a log-log Fourier domain are 
following a Gaussian distribution that corresponds to a log-normal distribution in Euclidean space. 
Stochastic errors are introduced in this process as well as in the determination of roughness factors. 
These errors are propagated through transformation equation 18 into interpolation surfaces, 
leading to errors in replicates of downscaling products. 

3.5.2 Bias Correction 

In the linear bias correction part, the error is characterized by the following equation, and the 
coefficients are determined using least squares minimization:  

𝑅𝑅𝑔𝑔𝑡𝑡�𝑖𝑖𝑔𝑔, 𝑗𝑗𝑔𝑔� = 𝜅𝜅𝑅𝑅𝑟𝑟𝑡𝑡�𝑖𝑖𝑔𝑔, 𝑗𝑗𝑔𝑔� + 𝜀𝜀                  (22) 

where the subscripts r and g refer to the gauges and the radar-based pixel, respectively. Likewise, 
the corrected 𝑅𝑅∗𝑡𝑡 of the pixel values where gauges exist is implemented as follows: 

𝑅𝑅∗𝑡𝑡�𝑖𝑖𝑔𝑔, 𝑗𝑗𝑔𝑔� = 𝜅𝜅𝑅𝑅𝑟𝑟𝑡𝑡�𝑖𝑖𝑔𝑔, 𝑗𝑗𝑔𝑔� + 𝜀𝜀             (23) 

Since 𝜅𝜅 and 𝜀𝜀 are determined by least squares, 𝜀𝜀 can be interpreted as stochastic error and 𝜅𝜅 can 
be interpreted as an overall bias factor This linear relationship is specifically dependent on each 
event, that is on an hourly basis. Assuming 𝜀𝜀 satisfies a normal distribution with mean equal to 
zero 𝜀𝜀 ~ 𝑁𝑁(0,𝜎𝜎), the mean square error (MSE) then can be expressed as: 

𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑉𝑉𝑉𝑉𝑉𝑉 �𝑅𝑅𝑔𝑔𝑡𝑡�𝑖𝑖𝑔𝑔, 𝑗𝑗𝑔𝑔� − 𝑅𝑅∗𝑡𝑡�𝑖𝑖𝑔𝑔, 𝑗𝑗𝑔𝑔�� = 𝐸𝐸[(𝑅𝑅𝑔𝑔𝑡𝑡 �𝑖𝑖𝑔𝑔, 𝑗𝑗𝑔𝑔� − (𝜅𝜅𝑅𝑅𝑟𝑟𝑡𝑡�𝑖𝑖𝑔𝑔, 𝑗𝑗𝑔𝑔� + 𝜀𝜀))2] 

= 𝐸𝐸[(𝜅𝜅𝜅𝜅𝑟𝑟𝑡𝑡�𝑖𝑖𝑔𝑔, 𝑗𝑗𝑔𝑔�)2] + 𝐸𝐸[(𝑅𝑅𝑔𝑔𝑡𝑡�𝑖𝑖𝑔𝑔, 𝑗𝑗𝑔𝑔�)2] + 𝐸𝐸 �2𝜀𝜀𝜀𝜀𝑅𝑅𝑟𝑟𝑡𝑡�𝑖𝑖𝑔𝑔, 𝑗𝑗𝑔𝑔�� − 𝐸𝐸 �2𝜀𝜀𝑅𝑅𝑔𝑔𝑡𝑡�𝑖𝑖𝑔𝑔, 𝑗𝑗𝑔𝑔�� −

𝐸𝐸 �2𝜅𝜅𝑅𝑅𝑟𝑟𝑡𝑡�𝑖𝑖𝑔𝑔, 𝑗𝑗𝑔𝑔�𝑅𝑅𝑔𝑔𝑡𝑡�𝑖𝑖𝑔𝑔, 𝑗𝑗𝑔𝑔�� + 𝐸𝐸(𝜀𝜀2)              (24) 
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Assuming 𝜀𝜀  is independent of the radar retrieval algorithm, and assuming a simple 1 StageIV 
estimation error that relates the error to the magnitude of the estimate proper by a linear factor α≥0 
conditional on rainfall regime 𝑅𝑅𝑟𝑟,𝑐𝑐

𝑡𝑡  , Eq. (24) can be further simplified: 

𝑀𝑀𝑀𝑀𝑀𝑀 =  𝛼𝛼� 𝑅𝑅𝑟𝑟,𝑐𝑐
𝑡𝑡 � 𝐸𝐸[(𝑅𝑅𝑟𝑟𝑡𝑡�𝑖𝑖𝑔𝑔, 𝑗𝑗𝑔𝑔�)2] + 𝐸𝐸(𝜀𝜀2) + 𝐸𝐸[(𝑅𝑅𝑔𝑔𝑡𝑡�𝑖𝑖𝑔𝑔, 𝑗𝑗𝑔𝑔�)2] + 𝐸𝐸 �2𝜅𝜅𝑅𝑅𝑟𝑟𝑡𝑡�𝑖𝑖𝑔𝑔, 𝑗𝑗𝑔𝑔�𝑅𝑅𝑔𝑔𝑡𝑡�𝑖𝑖𝑔𝑔, 𝑗𝑗𝑔𝑔��  (25) 

For the second term of Eq. 25,  𝜀𝜀2 satisfies a χ2 distribution (Chi Square distribution) with mean 
greater than 0. 

 

3.5.3 Kriging  

The ordinary kriging estimator minimizes the variance of the error assuming the mean 𝜏𝜏 is 
constant and unknown: 

𝐸𝐸�𝐺𝐺(𝑥𝑥0)� =  𝜏𝜏                (25) 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑥𝑥0) = 𝐸𝐸[(𝐺𝐺(𝑥𝑥0) − 𝑍𝑍𝑜𝑜𝑜𝑜∗ (𝑥𝑥0))2]              (26) 

Rewriting Eqn. 11 in matrix notation: 

𝜸𝜸𝜸𝜸 = 𝑫𝑫                          (27) 

The variance of the prediction at location x0 can be estimated following Bailey and Gatrell 
(1995):  

𝜎𝜎𝑜𝑜𝑜𝑜2  (x0) = MSE = 𝑉𝑉𝑉𝑉𝑉𝑉(𝑥𝑥0) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝐺𝐺(𝑥𝑥0)) + 𝑉𝑉𝑉𝑉𝑉𝑉�𝑍𝑍𝑜𝑜𝑜𝑜∗ (𝑥𝑥0)� − 2𝐶𝐶𝐶𝐶𝐶𝐶(𝑍𝑍𝑜𝑜𝑜𝑜∗ (𝑥𝑥0),𝐺𝐺(𝑥𝑥0)) 

= 𝜎𝜎2(𝑥𝑥0) + 𝑉𝑉𝑉𝑉𝑉𝑉(∑ 𝜆𝜆𝑖𝑖𝑜𝑜𝑜𝑜𝐺𝐺(𝑥𝑥𝑖𝑖)) − 2𝐶𝐶𝐶𝐶𝐶𝐶(𝑍𝑍𝑜𝑜𝑜𝑜∗ (𝑥𝑥0),𝐺𝐺(𝑥𝑥0))𝑛𝑛
𝑖𝑖=1  

=𝜎𝜎2(𝑥𝑥0) + ∑ ∑ 𝜆𝜆𝑖𝑖𝑜𝑜𝑜𝑜𝜆𝜆𝑗𝑗𝑜𝑜𝑜𝑜𝛾𝛾𝑖𝑖𝑖𝑖𝑛𝑛
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1 − 2∑ 𝜆𝜆𝑗𝑗𝑜𝑜𝑜𝑜𝛾𝛾𝑗𝑗0𝑛𝑛

𝑗𝑗=1  

= 𝜎𝜎2 − 𝜸𝜸′𝑫𝑫                   (28)  

A spherical semivariogram model can be used to distribute the point estimates  𝜎𝜎𝑜𝑜𝑜𝑜2  (x0) as 
described in Section 3.3. 

  

4. IPHEx RQPE Evaluation and Discussion 

4.1 Event-Scale Evaluation 

Event-scale evaluation of StageIVDBK is presented for comparisons against raingauge 
measurements in the IPHEx domain during the IOP (2014-05-01 to 2014-06-15).  The most intense 
rainfall across the Pigeon River Basin was observed during the passage of a frontal system on May 
15th, 2014, and thus hourly-scale evaluation metrics are presented for this event2. 

                                                 
1 If available, the NEXRAD-StageIV estimation error model should be used instead. 
2 Hourly rainfall fields at hour YY represent the accumulation of rainfall during the previous hour.  
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Figure 3 - Raingauge data compared against StageIVD (blue triangles, downscaled Stage IV) data and corrected 
StageIVD (green circles are StageIVDB, and red diamonds are StageIVDBK). 

Figure 3 shows that bias correction alone does not significantly impact the rainfall at 06 
UTC (left panel) due to the high spatial variability of rainfall and high rainfall amounts within the 
domain suggesting that the homoscedasticity assumption is inadequate for this field.  Bias 
correction is effective for the more moderate and less spatially variable rainfall at 07UTC (right 
panel).  In both cases, the most significant improvement is the outcome from OK resulting in 
unbiased rainfall fields.  Cumulative rainfall curves during the IPHEX IOP at two selected 
raingauge locations (see Figure) on the eastern (left panel) and western ridges (right panel) ridges 
are shown in Figure 4 (see Figure 1).  

                      
Figure 4 - Cumulative rainfall curves at selected raingauges (see Figure 1 for location) during the IPHEx IOP. 

The spatial rainfall fields at 07 UTC are shown in Figure 5 including the original StageIV 
field at 4km resolution, the downscaled StageIVD at 1 km resolution, and StageIVDB and 
StageIVDBK respectively after bias correction and after OK. Note the significant enhancement of 
precipitation in the inner mountain region between 83.2-83.0 W and reduction of precipitation 
elsewhere. 
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Figure 5 - Spatial rainfall fields on 2014-05-15, 06-07 UTC. 

4.2 Climatology Evaluation 

 Upon generating ten years  (2008-2017) of  the RQPE fields one hour at a time 
(StageIVDBK), error analysis was conducted at the raingauge locations with a focus on the statistics 
of the diurnal and seasonal cycles of rainfall (mean and variance):  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  ∑𝑁𝑁𝑁𝑁𝑁𝑁 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑅𝑅𝑅𝑅>0𝑚𝑚𝑚𝑚)
# 𝑜𝑜𝑜𝑜 𝑁𝑁𝑁𝑁𝑁𝑁 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑹𝑹𝑹𝑹 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑          (29) 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝑁𝑁𝑁𝑁𝑁𝑁 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑅𝑅𝑅𝑅 > 0𝑚𝑚𝑚𝑚))             (30) 

Analysis of the diurnal cycle on a seasonal basis reveals bias patterns linked to radar 
operations, and in particular terrain blockage, radar beam overshooting, and excessive attenuation 
that may vary from hour to hour but when taken over a long period of time indicate localized errors 
in space and time that reflect the site hydrometeorology.  Light and shallow rainfall is a particular 
challenge in the region of study (e.g. Duan et al. 2015; Duan and Barros, 2017; Arulraj and Barros, 
2017).  The peak number of missed rainfall corresponds to about 10-15% of the total number of 
hours for each season in the late afternoon.  The missed events correspond to both light and 
moderate rainfall, and occasionally to isolated heavy rainfall likely associatd with isolated 
thunderstorms.  To improve the  climatology, the STIVD product was modified aplying the series 
of corrections described in Section 3.2 as illustrated by Figure 6: LRC, MRC, CRC and GRC 

  The new climatologically corrected STIVDBKC fields have significantly accurate diurnal 
cycle comparing to raingauges.  This processes is illustrated in Figure 6 for one raingauge in 
eastern ridges (left panel)  and another in the western ridges (right panel). 
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Figure 6 - Diurnal cycle of rainfall (mean and ±standard deviation) for different seasons and gauge locations.  Left 
panel - Summer (JAS: July-August-September) at RG008 in the eastern ridges.  Right panel – Spring (AMJ; April-
May-June ) at RG302 in the western ridges. Raingauge measurements (blue); StageIVDBK (black); StageIVDBKC (green). 

Biases in original StageIVD are more significant over the western ridges (e.g. right panel) 
at all times of day reflecting the impact of cloud immersion and seeder-feeder enhacement of low 
level precipitation over the ridges (Duan and Barros, 2017), with mid-day bias being a problem 
across the region (e.g., Barros and Arulraj, 2019).  Overall, analysis of the StageIVDBKC fields 
demonstrates that the climatology corrections work well in terms of mean rainfall.  This is also the 
case with regard to the missed detection errors.  Figure 7 shows the diurnal cycle of missed 
precipitation at two selected gauge locations (top row) in the winter (Januray-February and March 
– JFM) in StageIV that are preserved in Stage IVD (black) and StageIVDBK (cyan).  These missed 
precipitation evenst correspond to instances of very light rainfal (bottom row) at the raingauge 
locations (< 1.5 mm/hr).  After applying the LRC and MRC climatology corrections, the missed 
detection problems (cyan) in StageIVDBK are largely eliminated for the StageIVDBKC fields (green).  

 

 

 

 

 

 

 

 

Figure 7 –Top row - Wintertime (January-February-March, JFM) diurnal cycle of missing precipitation in the eastern 
ridges (RG003) and in the inner region (RG103) for each of the RR products: .  Bottom row- same as top row for the 
raingauge climatology of hourly rainfall (blue).  StageIVD (black); StageIVDBK (cyan); StageIVDBKC (green). 

4.3 Performance Metrics   

Mean values of the performance metrics (defined in Section 2.4) of hourly downscaled 
corrected rainfall at the 34 reference raingauge locations during the IPHEX IOP in 2014 are shown 
in Figure 8 with TS and HSS calculated for rainfall rates > 1mm/hr.  StageIVDBKC data sets have 
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much lower BIAS and RMSE  than the downscaled Stage IV with values below 0.1 mm/hr at all 
times. Note TS and HSS scores consistently > 0.5 for StageIVDBKC. 

                 
Figure 8 –   Performance metrics (Section 2.4) of Stage IVD (black) and Stage IVDBKC (green) during the IPHEx IOP. 

When integrated over the ten-year period, the averaged seasonal HSS and TS statistics of 
STIVDBKC demonstrate significantly better performance comparing to STIVD for all hours of the 
day (Figure 9). Moreover, note that there is no decrease in TS trend with increasing precipitation 
rate threshold (Figure 10) which indicates that the climatology correction is working for the heavy 
rainfall amounts that tend to be more linked to localized thunderstorm activity as well as for light 
rainfall.   Finally, the average errors of seasonal rainfall accumulation for each raingauge over the 
10 year length of record for StageIVDBKC were calculated as follows 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =  
∑ 𝑆𝑆𝑆𝑆𝑆𝑆𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷−∑ 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦= 2017
𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦=2008

𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦= 2017
𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦=2008

∑ 𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦= 2017
𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦=2008

              (31) 

 

and similarly for Stage IVD.   Figure 11 shows the diurnal cycle and seasonality distribution of 
RMSE conditional on rain rate. The RMSE generally stays below 0.1 mm/hr except in the early 
morning and in the late afternoon in the cold season.  In part this error could be related to snowfall 
which is not properly accounted for as the raingauges are not heated. A synthesis of the cumulative 
errors of rainfall at all locations is provided in Figure 12 (top row), and for contrast the same 
analysis is provided for StageIVD.  Note the seasonal scale errors are mostly in the warm season 
(AMJ and JAS) and  on average  remain below 0.5% except at Purchase Knob (indices 20 and 21, 
Table 1), and over the western regions for stations (30,31,32,33,34) where raingauges with 
different temporal resolution are collocated.  The larger errors are tied with the higher resolution 
raingauges (i.e. smaller tips), which suggests the errors can be attributed to temporal resolution, 
that is to say sub-hourly variability in rainfall intensity and consequently rainfall accumulation.  
Nevertheless, the errors do not exceed 2-3 % in all cases.  Thus, overall the performance metrics 
and error analysis show that the methods are applied correctly and that they are working as they 
should in terms of integrating the raingauge observations to the downscaled radar product.  This 
does not mean however that the reference product approaches the true rainfall with the same 
metrics, such as RMSE≤0.1mm/hr.  Indeed, this will be discussed by error analysis against 
independent measurements at other locations within the region the study in Section 4.4. 
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Figure 9 – Diurnal cycle of mean HSS and TS statistics  as a function of season for the entire network over the 10-
year reference period (2008-2017). StageIVD (black); StageIVDBKC (green). 
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Figure 10 – Seasonal mean HSS and TS statistics conditional on different rainfall thresholds for the entire network 
over the 10-year reference period (2008-2017). StageIVD (black); StageIVDBKC (green). 
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Figure 11 – Diurnal cycle of RMSE at hourly time-scale and seasonal-scale RMSE conditional on observed rainfall 
rate StageIVD (black); StageIVDBKC (green). 
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Figure 12 –  Rainfall accumulation error for each gauge in Table 1 (RG Index) and as a function of season for 
StageIVDBKC (top panel) and StageIVD (bottom panel). 
 
 
4.4 Spatial variability and Orographic Modulation of Rainfall 

For independent evaluation, three high-quality disdrometer stations (Figure 1, Table 2) among nine 
available during the IPHEX IOP are selected to illustrate the temporal evolution of rainfall 
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accumulations: P4 (elevation: 1956m) on the western ridges at high elevation, and P20 (elevation: 
1860m) and P9 (elevation: 794m) in the inner region at high and low elevation respectively.  Note 
that errors in disdrometer measurements are not explicitly addressed here, but they are expected to 
be larger for high intensity rainfall as well as for fog-haze-cap clouds conditions ( e.g. Angulo-
Martinez and Barros, 2015) when numbers of small drops are very large (for example P4). 

Table 2 – Geographical coordinates of high quality Parsivel 2 disdrometer stations available during the IPHEX IOP 
and used for independent evaluation (see Figure 1).   

NO. Site Location Sensor Lat. Lon. Elev. (m) 
1 P3 P2 35.586157 -83.072477 1493 
2 P4 P2 35.558240 -83.494937 1956 
3 P8 P2 35.804689 -82.660401 598 
4 P9 P2 35.517746 -82.965553 794 
5 P10 P2 35.306469 -83.201963 690 
6 P15 P2 35.441441 -83.074138 992 
7 P18 P2 35.315374 -82.871927 1720 
8 P19 P2 35.576834 -82.775736 954 
9 P20 P2 35.464401 -83.113492 1860 

 

Figure 14 shows that STIVDBKC works better at P4 (high elevation on the western ridges) than P9 
(low elevations in the inner region). STIVDBKC overestimates low elevation rainfall associated with 
small scale afternoon convection that is not observed at low elevations.  This is illustrated by the 
much steeper slopes at P9 as well as number of events.  The performance at P20 shows the 
problems with overestimation of the large storm on May 15th on the lee side of one of the central 
ridges with respect to the propagating storm, which is aggravated by bias correction and kriging 
(i.e. Stage IVD is better than StageIVDBK), that is StageIVDBKC is overcorrecting localized 
rainshadow effects.   Nevertheless, overall the product shows the ability to capture the overall 
frontal storm and also light rainfall but with different error patterns. 

  
Figure 14 - Cumulative rainfall curves at selected disdrometer locations (see Fig.1, Table 2) during the IPHEx IOP. 

One way to illustrate this point is to characterize the dependence of the bias factor B with  
elevation calculated as follows: 

𝐵𝐵 =  ∑𝐷𝐷 𝑜𝑜𝑜𝑜 𝑅𝑅𝑅𝑅
∑𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

           (25) 
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Figure 15 – Bias factor at different locations for a frontal storm on May 15, 2014 during the IPHEX IOP: left panel: 
morning and early afternoon; right panel: afternoon and early evening.  

For an event with strong large-sacle organization, raingauges and disdrometers can capture the 
rainfall most of the time, and as expected the performance is very good at the raingauge locations 
during the frontal passage in the morning (Figure 15).Overall, STIVDBKC overestimates at the 
disdrometer locations at lower elevations as indicated by B < 1.  Similar analysis for a day 
characterized by isolated precipitation (5/27/2014) is presented in Figure 16. 

 
Figure 16 - Bias factor at different locations for multiple clusters of convective rainfall in the absence of synoptic 
forcing. 

For  days with isolated thunderstorms in the afternoon and light rainfall in the morning, STIVDBKC 
overestimates rainfall everwyhwere except at the the gauge locations that are co-located with the 
thunderstorm activity. This analysis suggest that the current IPHEX RQPE produc will need to 
address three critical overestimation issues: 

1) Localized mesoscale upwind-leewind effects (rainshadow) during synotptic scale events;  
2) Overestimation at low elevations during synoptic scale events; 
3) Spatial intermittency tied to isolated convective activity. 
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5. Conclusion 

Radar products have insufficient resolution for comparison against raingauges. A fractal 
downscaling framework is used to preserve the spatial statistics of rainfall fields and obtain high 
resolution data sets. Subsequent results have shown that radar data contain significant biases 
especially in complex terrain. Bias correction and Kriging are then applied to reduce the biases in 
the radar rainfall products. Significant biases in StageIVD are removed during the late afternoon. 
And these techniques have well solved the problem of high biases over western ridges. A ten year 
climatology analyses indicate that previous bias correction is not sufficient, therefore a slight and 
extreme rainfall correction are employed in bias correction scheme. Results suggest that the 
application of this scheme can greatly reduce biases in StageIVD in terms of missing precipitation, 
providing us an unambiguous method to correct radar biases especially at high elevations. 
Performance metrics such as Threat Score (TS) and Heidke Skill Scores (HSS) are on average > 
0.8 and close to 1 respectively for various rainfall thresholds over the 10-year period, and > 0.5 at 
the event time-scale(hourly). The root mean square error (RMSE) at the gauges is below 0.1 mm/hr 
and 0.5% for seasonal-scale accumulations.  Evaluation against an independent disdrometer data 
set consisting of disdrometers at various locations indicates large overestimation errors (~30%) in 
the inner mountain region and at low elevations during the IPHEX IOP.  Error analysis shows that 
overestimation is tied to leeside and low elevation rainfall organized by ridge-valley features in 
the inner mountain region during the passage of synoptic scale events, and to unwarranted space-
filling when only isolated convective activity is present.  Based on this, a Version 2 product will 
be focus on correcting low elevation rainfall using information from low elevation disdrometers 
and from NWP model simulations. Spatial intermittency will be addressed through modified 
fractal downscaling methodology conditional on the perimeter of precipitation  features (i.e rain 
support of rainfall clusters in Nogueira and Barros, 2015) in StageIV.   
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