# title: extrapolation of the configurational entropy S_conf from the Frenkel-Ladd method as a function of packing fraction phi # columns: phi, S_conf 0.55 0.38534 0.551 0.38278 0.552 0.38007 0.553 0.37719 0.554 0.37415 0.555 0.37094 0.556 0.36756 0.557 0.36401 0.558 0.36029 0.559 0.3564 0.56 0.35234 0.561 0.3481 0.562 0.34367 0.563 0.33908 0.564 0.3343 0.565 0.32934 0.566 0.3242 0.567 0.31888 0.568 0.31337 0.569 0.30767 0.57 0.30178 0.571 0.29571 0.572 0.28944 0.573 0.28297 0.574 0.27632 0.575 0.26946 0.576 0.26241 0.577 0.25516 0.578 0.24769 0.579 0.24004 0.58 0.23217 0.581 0.2241 0.582 0.21582 0.583 0.20733 0.584 0.19862 0.585 0.18971 0.586 0.18057 0.587 0.17122 0.588 0.16165 0.589 0.15186 0.59 0.14184 0.591 0.1316 0.592 0.12113 0.593 0.11044 0.594 0.09952 0.595 0.08835 0.596 0.07696 0.597 0.06533 0.598 0.05347 0.599 0.04136 0.6 0.02901 0.601 0.0164 0.602 0.00356 0.603 -0.00953 0.604 -0.02287 0.605 -0.03646 0.606 -0.0503 0.607 -0.06442 0.608 -0.07878 0.609 -0.0934 0.61 -0.10829 0.611 -0.12344 0.612 -0.13885 0.613 -0.15456 0.614 -0.17051 0.615 -0.18674 0.616 -0.20325 0.617 -0.22004 0.618 -0.23711 0.619 -0.25447 0.62 -0.2721 0.621 -0.29001 0.622 -0.30822 0.623 -0.32673 0.624 -0.34553 0.625 -0.36462 0.626 -0.38401 0.627 -0.4037 0.628 -0.42369 0.629 -0.44399 0.63 -0.4646 0.631 -0.48552 0.632 -0.50674 0.633 -0.52827 0.634 -0.55014 0.635 -0.57232 0.636 -0.59481 0.637 -0.61762 0.638 -0.64077 0.639 -0.66424 0.64 -0.68804 0.641 -0.71217 0.642 -0.73664 0.643 -0.76144 0.644 -0.78658 0.645 -0.81205 0.646 -0.83788 0.647 -0.86405 0.648 -0.89056 0.649 -0.91742 0.65 -0.94464 0.651 -0.97221 0.652 -1.00014 0.653 -1.02841 0.654 -1.05705 0.655 -1.08605 0.656 -1.1154 0.657 -1.14514 0.658 -1.17523 0.659 -1.20569 0.66 -1.23651 0.661 -1.26771 0.662 -1.29929 0.663 -1.33123 0.664 -1.36354 0.665 -1.39624 0.666 -1.42931 0.667 -1.46276 0.668 -1.49661 0.669 -1.53082 0.67 -1.56541 0.671 -1.60039 0.672 -1.63575 0.673 -1.6715 0.674 -1.70763 0.675 -1.74414 0.676 -1.78105 0.677 -1.81833 0.678 -1.856 0.679 -1.89406 0.68 -1.93251 0.681 -1.97133 0.682 -2.01054 0.683 -2.05014 0.684 -2.09011 0.685 -2.13048 0.686 -2.17122 0.687 -2.21233 0.688 -2.25382 0.689 -2.29569 0.69 -2.33793 0.691 -2.38055 0.692 -2.42353 0.693 -2.46687 0.694 -2.51058 0.695 -2.55464 0.696 -2.59907 0.697 -2.64385 0.698 -2.68897 0.699 -2.73443 0.7 -2.78023 0.701 -2.82637 0.702 -2.87283 0.703 -2.91961 0.704 -2.96671 0.705 -3.01411 0.706 -3.06182 0.707 -3.10983 0.708 -3.15812 0.709 -3.20669 0.71 -3.25553 0.711 -3.30461 0.712 -3.35397 0.713 -3.40356 0.714 -3.45339 0.715 -3.50342 0.716 -3.55367 0.717 -3.60412 0.718 -3.65474 0.719 -3.70555 0.72 -3.7565 0.721 -3.80759 0.722 -3.85882 0.723 -3.91014 0.724 -3.96158 0.725 -4.01308 0.726 -4.06464 0.727 -4.11624 0.728 -4.16786 0.729 -4.2195 0.73 -4.27111 0.731 -4.32267 0.732 -4.37418 0.733 -4.4256 0.734 -4.47691 0.735 -4.52809 0.736 -4.5791 0.737 -4.62993 0.738 -4.68055 0.739 -4.73092 0.74 -4.78103 0.741 -4.83084 0.742 -4.88031 0.743 -4.92942 0.744 -4.97812 0.745 -5.02641 0.746 -5.07423 0.747 -5.12155 0.748 -5.16833 0.749 -5.21452