//Only include wave with participants use "${inter}/Psycorona_long_sft2",clear cap drop miss egen miss=rmiss(w_c19perBeh01_Harmonized w_c19perBeh02_Harmonized w_c19perBeh03_Harmonized age gender unemployment edu w_PFS01) drop if miss>0 cap drop m33 merge n:1 CountryName edate using "${inter}/vaccination",gen(m33) update keep if m33==3 sort CountryName edate keep CountryName people_vaccinated_per_hundred edate duplicates drop CountryName edate,force keep if edate==22383|edate==22474 codebook CountryName export excel using "${inter}/vaccination_07",firstrow(variables) import excel "${inter}/vaccination_07.xls", sheet("Sheet1") firstrow clear save "${inter}/vaccination_07_final_used",replace ////2021 population data (source: https://www.cia.gov/the-world-factbook/about/archives/2021/field/population/country-comparison) import delimited "${input}/pop_data 2021", varnames(1) clear rename name CountryName cap drop pop destring value, ignore(",") gen(pop) replace pop=pop/1000 keep CountryName pop replace CountryName="Czech Republic" if CountryName=="Czechia" replace CountryName="Republic of Serbia" if CountryName=="Serbia" replace CountryName="South Korea" if CountryName=="Korea, South" replace CountryName="United Republic of Tanzania" if CountryName=="Tanzania" replace CountryName="United States of America" if CountryName=="United States" save "${inter}/2021pop", replace //all countries in final regression & two dates use "${inter}/Psycorona_long_sft2",clear cap drop miss egen miss=rmiss(w_c19perBeh01_Harmonized w_c19perBeh02_Harmonized w_c19perBeh03_Harmonized age gender unemployment edu w_PFS01 ) drop if miss>0 duplicates drop CountryName,force keep CountryName sft_pca COUNTRYTot_Population(thousand) cap drop date1 gen date1="2021-04-13" cap drop date2 gen date2="2021-07-13" tolong date*,i(CountryName) gen date2=date(date,"YMD") format date2 %dM_d,_CY rename date2 edate cap drop m44 merge 1:1 CountryName edate using "${inter}/vaccination",gen(m44) update keep if m44==3 sort CountryName edate keep CountryName people_vaccinated_per_hundred edate sft_pca drop if CountryName=="Hong Kong S.A.R."|CountryName=="Taiwan" save "${inter}/vaccination_07_all",replace use "${inter}/vaccination_07_final_used",clear cap drop date_num bysort CountryName: egen date_num=count(edate) cap drop a1 merge 1:1 CountryName edate using "${inter}/vaccination_07_all",gen(a1) cap drop num bysort CountryName: egen num=sum(date_num) cap drop CountryName1 gen CountryName1=CountryName replace CountryName1=CountryName+"*" if num==0 cap drop country encode CountryName, gen(country) drop a1 num date_num rename people_vaccinated_per_hundred people_vaccinated reshape wide people_vaccinated, j(edate) i(country) sort CountryName cap drop increase_vacc gen increase_vacc=people_vaccinated22474-people_vaccinated22383 //figure S1 graph hbar people_vaccinated22383 increase_vacc if people_vaccinated22474<=29, bar(1, color("0 108 162")) bar(2, color("172 205 220")) over(CountryName1, sort(people_vaccinated22474)lab(angle(0) labsize(vsmall) )) graphregion(color(white)) ytitle("") legend(label(1 "April 13, 2021") label(2 "Increase between April 13 and July 13, 2021") col(1) size(vsmall)) graphregion(fcolor(white)) ysize(13) xsize(6.5) stack graph save "${output}/vaccination1",replace graph hbar people_vaccinated22383 increase_vacc if people_vaccinated22474>29, bar(1, color("0 108 162")) bar(2, color("172 205 220")) over(CountryName1, sort(people_vaccinated22474)lab(angle(0) labsize(vsmall) )) graphregion(color(white)) ytitle("") legend(label(1 "April 13, 2021") label(2 "Increase between April 13 and July 13, 2021") col(1) size(vsmall)) graphregion(fcolor(white)) ysize(13)xsize(6.5) stack graph save "${output}/vaccination2",replace graph combine "${output}/vaccination1.gph" "${output}/vaccination2.gph" , col(2) scheme(s1mono) scale(0.7) ysize(9) xsize(8.2) graph save "${output}/vaccination_combined",replace use "${inter}/vaccination_07_all",clear cap drop m55 merge n:1 CountryName using "${inter}/2021pop",gen(m55) replace pop=53798.084 if CountryName=="Myanmar" replace pop=5133.392 if CountryName=="Palestine" drop if m55==2 cap drop country encode CountryName, gen(country) rename people_vaccinated_per_hundred people_vaccinated reshape wide people_vaccinated, j(edate) i(country) //X: country-level family ties, Y: increase in vaccination coverage between April 13 and July 13 2021 as a percentage of vaccination coverage on April 13 2021 (%) tab CountryName if people_vaccinated22383==0 //for Bosnia and Herzegovina & Libya, use data nearest to April 13 replace people_vaccinated22383=0.79 if CountryName=="Bosnia and Herzegovina" //April 14 replace people_vaccinated22383=0.01 if CountryName=="Libya" //April 17 cap drop increase_vacc_per gen increase_vacc_per=(people_vaccinated22474-people_vaccinated22383)/people_vaccinated22383 sum increase_vacc_per,d sort increase_vacc_per drop if increase_vacc_per==623 | increase_vacc_per==138.5|CountryName=="Albania" //outlier //Figure S2 twoway (scatter increase_vacc_per sft_pca [w=pop],mlcolor("46 134 178") mfcolor("222 236 243") )(lfit increase_vacc_per sft_pca, color("155 58 74")), /// xtitle("Country-level strength of family ties",size(small)) ytitle(`"Precentage increase of country-level vaccination coverage"' `"between April 13 and July 13, 2021"' , size(small)) legend(off) scheme(s1mono) xlab(,labsize(small)) ylab(,labsize(small)) reg increase_vacc_per sft_pca graph save "${output}/vaccination5",replace