Data from: Distribution and homogenization of multiple mercury species inputs to freshwater wetland mesocosms

Public

  • Mercury (Hg)-impaired aquatic ecosystems often receive multiple inputs of different Hg species with varying potentials for transformation and bioaccumulation. Over time, these distinct input pools of Hg homogenize in their relative distributions and bioaccumulation potentials as a result of biogeochemical processes and other aging processes within the ecosystem. This study sought to evaluate the relative timescale for homogenization of multiple Hg inputs to wetlands, information that is relevant for ecosystem management strategies that consider Hg source apportionment. We performed experiments in simulated freshwater wetland mesocosms that were dosed with four isotopically labeled mercury forms: two dissolved (Hg2+ and Hg-humic acid) and two particulate (nano-HgS and Hg adsorbed to FeS). Over the course of one year, we monitored the four Hg isotope endmembers for their relative distribution between surface water, sediment, and fish in the mesocosms, partitioning between soluble and particulate forms, and conversion to methylated mercury (MeHg). We also evaluated the reactivity and mobility of Hg through sequential selective extractions (SSE) of sediment and uptake flux of aqueous Hg in diffusive gradient in thin-film (DGT) passive samplers. We observed that the four isotope spikes were relatively similar in surface water concentration (ca. 3000 ng/L) immediately after spike addition. At 1 to 3 months after dosing, Hg concentrations were 1 to 50 ng/L and were greater for the initially dissolved isotope endmembers than the initially particulate endmembers. In contrast, the Hg isotope endmembers in surface sediments were similar in relative concentration within 2 months after spike addition. However, the uptake fluxes of the Hg in DGT samplers, deployed in both the water column and surface sediment, were generally greater for initially dissolved Hg endmembers and lower for the initially particulate endmembers. At one year post-dosing, the DGT-uptake fluxes were converging toward similar values between the Hg isotope endmembers. However, the relative distribution of isotope endmembers were still significantly different in both the water column and sediment (p<0.01 according to one-way ANOVA analysis). In contrast, SSE resulted in a homogenous distribution with >90% of each endmember extracted in the KOH fraction, suggesting that Hg species were associated with sediment organic matter. For MeHg concentrations in surface sediment and fish, the relative contributions from each endmember were significantly different at all sampling time points. Altogether, these results provide insights to the timescales of distribution for different Hg species that enter a wetland ecosystem. While these inputs attain homogeneity in concentration in primary storage compartments (i.e., sediments) within weeks after addition, these input pools remain differentiated for more than one year in terms of reactivity for passive samplers, MeHg concentration and bioaccumulation. ... [Read More]

Total Size
8 files (167 KB)
Data Citation
  • Hsu-Kim, H., Wadle, A., Neal-Walthall, N., & Ndu, U. (2023). Data from: Distribution and homogenization of multiple mercury species inputs to freshwater wetland mesocosms. Duke Research Data Repository. https://doi.org/10.7924/r4fj2p49s
DOI
  • 10.7924/r4fj2p49s
Publication Date
ARK
  • ark:/87924/r4fj2p49s
Collection Dates
  • 2017 to 2021
Type
Format
Related Materials
Funding Agency
  • National Science Foundation
  • National Institute of Environmental Health Sciences
  • Office of Biological and Environmental Research
Grant Number
  • NSF DBI-1266252
  • DOE DE-SC0019408
  • NIEHS R01ES24344, P42ES010356
Title
  • Data from: Distribution and homogenization of multiple mercury species inputs to freshwater wetland mesocosms