Duke University Libraries' Multispectral Imaging Team. (2019). [Acts of the Apostles]. (multispectral file stack). Duke Digital Repository. https://doi.org/10.7924/r4c53jx21
Wilson, J. W., Degan, S., Gainey, C. S., Mitropoulos, T., Simpson, M. J., Zhang, J. Y., & Warren, W. S. (2019). Data from: In vivo pump-probe and multiphoton fluorescence microscopy of melanoma and pigmented lesions in a mouse model. Duke Digital Repository. https://doi.org/10.7924/r4cc0zp95
Hu, Y., Charbonneau, P. (2018). Data and Scripts from: Clustering and assembly dynamics of a one-dimensional microphase former. Duke Digital Repository. https://doi.org/10.7924/r41n81s8j
Bass, C. R.; Yu, A. W., Capehart, B. P. (2017). 16s rRNA microarray analysis of murine blood and brain tissue. Duke Digital Repository. https://doi.org/10.7924/G8B56GNQ
Hu, Y., Fu, L., Charbonneau, P. (2018). Data, generating scripts and figures from: Correlation lengths in quasi-one-dimensional systems via transfer matrices. Duke Digital Repository. https://doi.org/10.7924/r4mk68m43
Mitra, S., Zhong, J., MacAlpine, D., Hartemink, A., MacAlpine, H. (2020). Data from: RoboCOP: Multivariate state space model integrating epigenomic accessibility data to elucidate genome-wide chromatin occupancy. Duke Research Data Repository. https://doi.org/10.7924/r4hx1b43s
Birolo, G., Charbonneau, P., & Hu, Y. (2019). Data and scripts from: Dynamics around the Site Percolation Threshold on High-Dimensional Hypercubic Lattices. Duke Digital Repository. https://doi.org/10.7924/r4571cf37
The Integrated Precipitation and Hydrology EXperiment (IPHEX) seeks to characterize warm season orographic precipitation regimes, and the relationship between precipitation regimes and hydrologic processes in regions of complex terrain. IPHEX includes two major activities:
1. The development, evaluation and improvement of remote-sensing precipitation algorithms in support of the Global Precipitation Measurement Mission (GPM) through a NASA GPM ground validation field campaign: IPHEX-GVFC (https://iphex.pratt.duke.edu/node/64)
2. The evaluation of Quantitative Precipitation Estimation (QPE) products for hydrologic forecasting and water resource applications in the Upper Tennessee, Catawba-Santee, Yadkin-Pee Dee and Savannah river basins: IPHEX- HAP (H4SE) (https://iphex.pratt.duke.edu/node/65). NOAA HMT has synergy with this project.
How can an amorphous material be rigid? Glass – the prototypical and ubiquitous amorphous solid – inhabits an incredibly ramified and complex energy landscape, which presumably underlies its rigidity. But how? Dealing with so many relevant energy minima and the ensuing far-from-equilibrium dynamics has emerged as one of the central problems in statistical physics. Tackling it requires new tools and concepts. The Simons Collaboration on Cracking the Glass Problem, addressing such fundamental issues as disorder, nonlinear response and far-from-equilibrium dynamics, builds upon three powerful approaches: the study of marginal stability at jamming, the mean-field theory of glasses in infinite dimension, and the dynamics of systems in complex landscapes. The convergence of recent breakthroughs in these areas generates a unique opportunity to come to grips with these three outstanding and intimately related challenges. This collection of datasets is associated with publications from the Charbonneau group and their collaborators as part of the Simons collaboration.
Warnell, K., & Olander, L. (2020). Data from: Opportunity assessment for carbon and resilience benefits on natural and working lands in North. Carolina. Duke Research Data Repository. https://doi.org/10.7924/r4ww7cd91