The Superfund Research Center at Duke University focuses on early, low-dose exposures to environmental contaminants and their developmental impacts, changes usually only evident later in life.
Youth activists are often left out of political history archives. This is true despite the fact that youth social movements repeatedly change the course of history. To contribute to rectifying this imbalance in archival sources, students in Duke professor Wesley Hogan's annual Fall FOCUS Program class, "US Racial Justice and Environmental Justice Youth Movements since 2010," create an archive of their oral history interviews with youth activists in the Black Lives Matter, environmental justice, LGBTQ+, gender equity, and Indigenous rights movements.
Each interview contains an MP3 or MP4 file, an interview transcript approved by the narrator, a brief introduction to the narrator, and an index of the interview... [Read More]
This collection includes transcribed data from thousands of science logs from the research vessels (R/V) Dan Moore, Eastward, and Cape Hatteras. The R/V Eastward operated out of the Duke Marine Lab from 1964-1981. The R/V Dan Moore operated out of Cape Fear Community College from 1982-2013. The R/V Cape Hatteras was owned by the National Science Foundation and operated by Duke University from 1981-2013. It was purchased by the Cape Fear Community College in 2013. The science logs from these three research vessels contain a wealth of climate and biodiversity data from every station that was surveyed. Digital copies of the logs can be found at the North Carolina Digital Collections:
OSNAP is an international program designed to provide a continuous record of the full-water column, trans-basin fluxes of heat, mass and freshwater in the subpolar North Atlantic. The OSNAP observing system consists of two legs: one extending from southern Labrador to the southwestern tip of Greenland across the mouth of the Labrador Sea (OSNAP West), and the second from the southeastern tip of Greenland to Scotland (OSNAP East).
The observing system also includes subsurface floats (OSNAP Floats) in order to trace the pathways of overflow waters in the basin and to assess the connectivity of currents crossing the OSNAP line.
OSNAP is a partner in the North Atlantic Virtual Institute (NAVIS), which connects science teams around the world studying climate variability and change in the North Atlantic. http://navinstitute.org/... [Read More]
Coastal habitats’ ability to store carbon and protect natural and human communities from hazards makes them valuable assets in state and community efforts to enhance coastal resilience and support climate mitigation. However, sea level rise poses a major threat to coastal habitats and the benefits they provide. The Nicholas Institute collaborated with six eastern seaboard states (North Carolina, Virginia, Maryland, Delaware, New Jersey, and New York) on a U.S. Climate Alliance-funded project to map coastal habitats' current coastal protection and carbon benefits, as well as how sea level rise may change the coastal zone habitats and their carbon balance over the next century.
Note: The state-level habitat and carbon projections in the "Blue carbon mapping for six mid-Atlantic states" dataset are updated versions of the projections in the "Coastal protection and blue carbon mapping for six mid-Atlantic states" dataset. Please use the more updated dataset for habitat and carbon information.... [Read More]
The Integrated Precipitation and Hydrology EXperiment (IPHEX) seeks to characterize warm season orographic precipitation regimes, and the relationship between precipitation regimes and hydrologic processes in regions of complex terrain. IPHEX includes two major activities:
1. The development, evaluation and improvement of remote-sensing precipitation algorithms in support of the Global Precipitation Measurement Mission (GPM) through a NASA GPM ground validation field campaign: IPHEX-GVFC (https://iphex.pratt.duke.edu/node/64)
2. The evaluation of Quantitative Precipitation Estimation (QPE) products for hydrologic forecasting and water resource applications in the Upper Tennessee, Catawba-Santee, Yadkin-Pee Dee and Savannah river basins: IPHEX- HAP (H4SE) (https://iphex.pratt.duke.edu/node/65). NOAA HMT has synergy with this project.
How can an amorphous material be rigid? Glass – the prototypical and ubiquitous amorphous solid – inhabits an incredibly ramified and complex energy landscape, which presumably underlies its rigidity. But how? Dealing with so many relevant energy minima and the ensuing far-from-equilibrium dynamics has emerged as one of the central problems in statistical physics. Tackling it requires new tools and concepts. The Simons Collaboration on Cracking the Glass Problem, addressing such fundamental issues as disorder, nonlinear response and far-from-equilibrium dynamics, builds upon three powerful approaches: the study of marginal stability at jamming, the mean-field theory of glasses in infinite dimension, and the dynamics of systems in complex landscapes. The convergence of recent breakthroughs in these areas generates a unique opportunity to come to grips with these three outstanding and intimately related challenges. This collection of datasets is associated with publications from the Charbonneau group and their collaborators as part of the Simons collaboration.